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Abstract. The effective medium theory has been used to simulate the temperature dependence
of the DC conductivity in granular systems. Various grain size, intergrain separation and charging
energy distributions have been tested. Non-activated hopping type dependences are obtained.
The conditions to be fulfilled to obtain the thermal variation experimentally observed in most
granular metals and conducting polymers are discussed.

1. Introduction

As far as electronic transport properties are concerned, electronic conducting polymers
often display striking similarities with granular metal films and cermets for small metal
concentrations [1, 2]. To the isolated nanometre-sized metallic grains randomly dispersed
in the insulating matrix correspond highly doped polaronic clusters embedded in less doped
regions inside the electronic conducting polymer. The orders of magnitude of the charging
energies, of the diameters of the conducting islands and of the mean distances separating
the grains are similar. In both types of material, the conduction process can be described
as a thermally activated intergrain hopping phenomenon of the charge carriers. The DC
conductivity,σ , is generally observed experimentally to behave as

σ(T ) = σ0 exp

(
−
(
T0

T

)α)
(1)

with α = 1/2 in cermets and in many conducting polymers.
Many papers have been devoted to the calculation of the exponentα (1). Nevertheless,

the theoretical value ofα, and the relations between the various distances involved in the
transport process, remain matters of controversy [3–9]. To ensure simply the homogeneity
of the metallic grain concentration, Shenget al have assumed the ratio,d/s, of the grain
diameter,d, and of the thickness,s, of the insulating barrier which surrounds it, is a constant
inside the material [3, 4]. Some models do not require any relation between the island
size and the grain separation but arrive at a fractional temperature dependence by evoking
unphysical distributions of charging energies to place or remove one electron from a neutral
grain [7, 8, 10]. With an approximate effective medium calculation, Adkins predicted that the
conductivity should have an activated temperature dependence (α = 1) at all temperatures
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in the absence of any correlation betweens andd [7, 8]. Shenget al have also evaluated
the conductivity with the optimal percolation path method, without any correlation between
s andd, and assuming a finite density of state at the Fermi level due to impurities. They
have obtained exponentsα between 1/4 and 1 [6].

The object of this paper is to take part in this discussion and to perform a complete
numerical simulation of the temperature dependence of the conductivity based on the
effective medium theory. We reexamine the values of the exponentα obtained depending
on

(i) the correlation between the intergrain separations and the grain sized,
(ii) the distributions of these distances and
(iii) the presence of a disorder modifying the charging energy distribution.

We have also studied the effects related to the thermal variation of the various distribution
widths, to be considered to account for the transport process. When the temperature changes,
the sizes of the grains and the intergrain distances involved in the transport process are
modified. The tunnelling distance between two localized states may depend on temperature
because the charge carrier has to optimize the balance between tunnelling and activation.

Exponents higher than 1/2 but lower than 1 are obtained. The correlation betweens

andd is not necessary to ensure fractional exponents,α < 1. We discuss the conditions to
be fulfilled to obtain the valueα = 1/2 which is the best to account for the experimental
data.

In the first section, we describe the effective medium theory which serves as a basis for
the numerical simulation and the parameters of our model. In the second section, we will
describe and discuss the results.

2. The model

2.1. The effective medium theory

In the framework of the effective medium theory, the disordered material is replaced by a
homogeneous effective medium. Each grain defines a site and two sites are linked together
by a conductance determined by the transition rate between these two localized centres.
Therefore, the system is described by a disordered resitor network with a distribution,
f (γ ), of conductances between two nodes of the network. These random conductances
are then replaced by a single average value,γeff , which is equal to the conductivity of the
network and determined implicitly by the equation [11]∫

f (γ )
γ − γeff

γ + (d − 1)γeff
dγ = 0 (2a)

whered is the dimensionality of the medium.
The equation (2a) can be written, in a three-dimensional system,

3γeff

∫
f (γ ) dγ

γ + 2γeff
= 1. (2b)

2.2. Transition rate

Following earlier work on disordered systems [12], we have assumed that the conductance
or the transition rate connecting two metal grainsi and j is determined by the charging
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energies and the tunnelling process and given in the low-temperature limit by

γij = γ0 exp

(
−2Lsij − Eij

kT

)
(3)

wheresij denotes the distance between the grain surfaces along the line joining their centres,
k is the Boltzman constant, andL is the decay rate of the electron wave function in the

insulating region of the material. In the following, we have taken 1Å
−1
< L < 3 Å

−1
.

Any larger variation ofL will be included in the intergrain distance distribution.Eij is the
activation energy involved in the hopping process:

Eij = 1
2(|Eci − Ecj | + Eci + Ecj ) (4)

whereEci = e2/κCi is the charging energy of the graini, κ is the effective dielectric
constant of the granular metal andCi the capacitance of the graini. Ci is proportional to
the diameterdi of the graini.

2.3. Intergrain distance, grain size and charging energy distributions

Realistic distributions of the size of the grains, of the charging energy and of the intergrain
separations must be incorporated. In the case of granular metal films,d is expected to have
a log-normal distribution as has been measured in detailed studies [13]:

P(d) = 1√
2π

1

µd

1

d
exp

(
− ln2(d/d0)

2µ2
d

)
(5a)

whereµd is the width of the distribution of ln(d) andd0 the average grain size.
As the grain capacitance is inversely proportional to the grain size, in the absence of

any disorder on the charging energies,Ec is described by a log-normal distribution:

P(Ec) = 1√
2π

1

µEc

1

Ec
exp

(
− ln2(Ec/E0)

2µ2
Ec

)
. (5b)

E0 is the average charging energy andµEc = µd . Detailed measurements of the size
distribution show thatµd lies in the range 0.2–0.5 [3].

There has been little study of the distribution,Q(s), of the intergrain separation distances
s. Therefore, two distributions have been tested:

Q(s) = 1

smax − smin for smin < s < smax

Q(s) = 0 otherwise (6a)

and

Q(s) = 1√
2π

1

µs

1

s
exp

(
− ln2(s/s0)

2µ2
s

)
. (6b)

We have takenµs in the range 0.2–0.5.

2.4. Charging energy disorder

A series of studies with discontinuous metal films have provided evidence for the presence
in granular metals of large disorder potentials that can shift locally the energy of the grain
away from the Fermi level of the system [7, 8]. An important source of disorder energy
may be the variation in the work function associated with different crystallographic faces
around the grains [14]. This shift cannot exceed±Ec since the ionization by one electronic
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charge of the grain would then lead to a state closer to the Fermi level and it would be
energetically favourable for the grain to change its charge state. To describe this ‘smearing
effect’, we have used the smoothly varying function proposed by Zhouet al [5].

F(E) = N−1


tanh

[
10

(
Ec + E
Ec

)]
−Ec 6 E < 0

tanh

[
10

(
Ec − E
Ec

)]
0< E < Ec

0 otherwise.

(7)

WhereN is a normalization constant. The new energy distribution functionP ∗ is therefore
the convolution ofF(E) andP(Ec):

P ∗(E) =
∫ ∞

0
P(Ec)F (E − Ec). (8)

2.5. Limits in the charging energies, grain sizes and intergrain distances involved in the
transport process

At this point, we have to estimate the limits in the grain size, charging energy and intergrain
distance distributions. These real limits in the distributions may influence the temperature
dependence of the conductivity law [15].

The system cannot enclose infinitely large grains and the distribution of charging energy
must satisfy the conditionEc > Ecmin whereEcmin is determined by the maximum diameter
of the conducting grains.Ecmin has been estimated to be a few meV.

In the case of electronic conducting polymers, Zuppiroliet al derived the following
expression for the charging energy [1]:Ec = 2Ua/d(1+ d/2s). In this formula,U is
the on-site Coulomb repulsion anda is the monomer size. Witha ≈ 5 Å, U ≈ 2 eV,
dmax = 200 Å, and smin = 1 Å, Ecmin can be estimated to be 2 meV.

As far as the minimum intergrain barrier,smin, is concerned, we have usedsmin = 1 Å.
The maximum intergrain distancesmax was estimated to be a few nanometres.

The maximum charging energyEcmax is related to the minimum diameter of the
conducting grains. The use of the transition rateγij (3), requires a low electron–phonon
coupling constantg. In the case of electronic conducting polymers, Zuppiroliet al have
shown thatg = 5/n wheren is the number of monomers included in the conducting grain.
The conditiong � 1 leads to a minimum grain size of the order of a few nanometres, and
to maximum charging energies of a few hundred meV.

Alternatively to these values, independent of temperature, it is tempting, in order to
evaluate the maximum charging energy,Ecmax , and the maximum intergrain barrier,smax ,
involved in the transport process, to use some of the percolation theory results that suggest
that these limits can depend on temperature. In the framework of the percolation theory,
the system is conducting when the conductanceγij between the sitesi andj is greater than
a critical valueγc. The conduction criterionγij > γc can be expressed as

sij

smax
+ Eij

Ecmax
6 1 (9)

with

smax = 1

2L
ln

(
γ0

γc

)
(10)

Ecmax = kT ln

(
γ0

γc

)
. (11)
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The critical conductanceγc is also the conductance of the system and we can assume

γc ∝ exp

(
−
(
T0

T

)β)
(12)

with 1/46 β 6 1. We then obtain

smax ∝ 1

T β
(13)

and

Ecmax ∝ T 1−β (14)

where smax and Ecmax are the maximum tunnelling distance and the maximum charging
energy.

On the one hand, in the low temperature range, the activation process is difficult and the
maximum tunnelling distance increases. Hopping is not restricted to the nearest-neighbour
grains and to very small intergrain distances. On the other hand, in the high temperature
range, the maximum charging energy and the number of charged grains contributing to the
transport process increase. Activation is easier and nearest-neighbour hopping dominates
the transport process. Therefore, depending on the temperature range, the number of grains
involved in the hopping phenomenon changes and does not necessarily include the whole
of the distribution.

In the calculations, for simplicity, the conditionEij < Ecmax has been replaced by
Eci < Ecmax andEcj < Ecmax .

At this point, (2b) can be written

3γeff

∫ ∫ ∫
Ecmin<Eci <Ecmax
Ecmin<Ecj <Ecmax
smin<s<smax

P (Eci )P (Ecj )Q(s) dEci dEcj ds

γ + 2γeff
= 1. (15)

3. Results and discussion

The numerical resolution of (10) has been undertaken with NAG library Fortran routines in
the temperature range 10 K< T < 300 K. We used among others the Patterson, Piessens
and De Donker algorithms to estimate one-dimensional or multidimensional integrals and
the Bus and Dekker algorithm devised to approximate the single roots of transcendental
equations.

In figure 1 are displayed the variations of ln(γeff /γ0) versus 1/T in four distinct typical
cases which differ depending on whether

(i) d ands are correlated,
(ii) the distribution of charging energies is modified by random potentials and
(iii) the maximum intergrain distancesmax and the maximum charging energyEcmax

involved in the transport process depend on temperature.

In every case, the results were fitted on the whole temperature range with the relation

ln(γeff /γ0) = c1+ c2T
−α

wherec1 andc2 are constants. This exponentα is the same as the one of (1) sinceγeff is
proportional to the conductivity of the system. When the numerical values of the various
parameters increase or decrease by a factor of two, but with the same calculation hypotheses,
the uncertainty on the value of the exponentα can be estimated to1α = ±0.05. The value
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Figure 1. (a) d and s are correlated,s/d = 0.06. d has a rectangular distribution with
dmin = 20 Å and dmax = 500 Å. Ecmax and smax do not depend on temperature.α (1) has
been estimated to be 0.65. (b)d and s are not correlated. The log-normal distribution of the
charging energies (5b) is modified by random potentials (7) and (8).Ecmax and smax do not
depend on temperature.Ecmax = 200 meV,E0 = 30 meV,Ecmin = 5 meV, smax = 10 Å.
α(1) has been estimated to be 0.85. (c)d and s are not correlated.d andEc are described by
log-normal distributions (5b). Ecmax and smax depend on temperature (13) and (14). We have
chosenβ = 1/2 and

Ecmax =
(
E0

2

)
T 1/2 smax = 34

T 1/2
.

Reasonable orders of magnitude are obtained forsmax andEcmax in the whole temperature range.
E0 = 20 meV,Ecmin = 5 meV.α (1) has been estimated to be 0.7. (d)d ands are not correlated.
The log-normal distribution of the charging energies is modified by random potentials (7) and
(8). Ecmax andsmax depend on temperature andβ = 1/2.

Ecmax =
(
E0

2

)
T 1/2 smax = 34

T 1/2
.

E0 = 20 meV,Ecmin = 5 meV.α (1) has been estimated to be 0.5.

of the exponentβ (13) and (14), 1/4 6 β 6 1, does not affect significatively the value of
the exponentα obtained.

Several conclusions can be drawn from these simulations.

• The correlations/d = constant is not necessary to ensure fractional exponentsα < 1.
• The valueα = 1/2, which is experimentally observed, is obtained when three

conditions are fulfilled:

(i) s andd are not correlated;
(ii) random potentials are included in the charging energy distribution;
(iii) the maximum intergrain distance and the maximum charging energy involved in

the transport process depend on temperature.

Nevertheless, our results differ from the effective medium calculation reported by Adkins
[7, 8].

According to Adkins, in the absence of any correlation between the particle separation,
s, and the grain size,d, and with realistic distribution ofs andEc (or d), the conduction
at low temperatures is always very close to simple activation (α = 1). However, some
of the assumptions used by Adkins seem to us oversimplified. To obtain an approximate
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solution, Adkins replaces in (2a) the weighting factor [γ − γeff ]/[γ − (d − 1)γeff ] by its
limits −1/d − 1 corresponding toγ � γeff and 1 corresponding toγ � γeff . (2a) can
then be written∫ ∞

γeff

f (γ ) dγ = 1/d. (16)

This equation is then solved graphically. This analysis suffers from one unsatisfactory
feature. The effective medium treatment should be used only when the conductivity range
involved is not too large and when the conductance distribution function,f (γ ), is rather
peaked aroundγeff . Therefore, the conductances verifying the relationsγ � γeff or
γ � γeff should represent only a negligible part of the total distribution and the exact value
of the weighting factor should be crucial to determine the conductivity. If the conductivity
range is large, the percolation path method should be preferred. Seager and Pike [16] have
indeed shown that the effective medium treatment gives better results if

log

(
γmax

γmin

)
6 6 (17)

whereγmin andγmax are the maximum and minimum values of the conductances.

4. Conclusion

In this work, we have simulated the thermal variation of the conductivity in granular systems
with effective medium methods.

Hopping laws of the typeσ(T ) = σ0 exp(−(T0/T )
α) are obtained.

The exponentα = 1/2, observed in many conducting polymers, is observed when the
three following conditions are fulfilled:

(i) the grain diameter,d, and the intergrain barrier,s, are not correlated;
(ii) random potentials modify the charging energy distribution;
(iii) the maximum intergrain barrier and the maximum charging energy involved in the

transport process depend on temperature.

The existence of random potentials that would change the charging energy distribution needs
further support and remains to be explained for conducting polymers.
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